
MySQL Information Schema

MySQL Information Schema
Abstract

This is the MySQL Replication extract from the MySQL 5.1 Reference Manual.

Document generated on: 2009-06-03 (revision: 15169)

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. All rights reserved. U.S. Government Rights - Commercial software. Govern-
ment users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. Use is
subject to license terms. Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo and
MySQL are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the
U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Copyright © 1997-2008 MySQL AB, 2009 Sun Microsystems, Inc. Tous droits réservés. L'utilisation est soumise aux termes du contrat de li-
cence.Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, MySQL Enterprise Monitor 2.0, MySQL logo et MySQL sont des
marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may create a printed
copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the actual content is not altered or
edited in any way. You shall not publish or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Sun disseminates it (that is, electronically for download on a Web site with the software) or on a CD-ROM or similar me-
dium, provided however that the documentation is disseminated together with the software on the same medium. Any other use, such as any dis-
semination of printed copies or use of this documentation, in whole or in part, in another publication, requires the prior written consent from an au-
thorized representative of Sun Microsystems, Inc. Sun Microsystems, Inc. and MySQL AB reserve any and all rights to this documentation not ex-
pressly granted above.

For more information on the terms of this license, for details on how the MySQL documentation is built and produced, or if you are interested in
doing a translation, please contact the Documentation Team.

For additional licensing information, including licenses for libraries used by MySQL, see Preface, Notes, Licenses.

If you want help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can discuss your issues with other
MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages, and downloadable versions in
variety of formats, including HTML, CHM, and PDF formats, see MySQL Documentation Library.

http://www.mysql.com/company/contact/
http://dev.mysql.com/doc/refman/5.1/en/preface.html
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

INFORMATION_SCHEMA Tables
INFORMATION_SCHEMA provides access to database metadata.

Metadata is data about the data, such as the name of a database or table, the data type of a column, or access privileges. Other terms
that sometimes are used for this information are data dictionary and system catalog.

INFORMATION_SCHEMA is the information database, the place that stores information about all the other databases that the
MySQL server maintains. Inside INFORMATION_SCHEMA there are several read-only tables. They are actually views, not base
tables, so there are no files associated with them.

In effect, we have a database named INFORMATION_SCHEMA, although the server does not create a database directory with that
name. It is possible to select INFORMATION_SCHEMA as the default database with a USE statement, but it is possible only to read
the contents of tables. You cannot insert into them, update them, or delete from them.

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
-> FROM information_schema.tables
-> WHERE table_schema = 'db5'
-> ORDER BY table_name DESC;

+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
v56	VIEW	NULL
v3	VIEW	NULL
v2	VIEW	NULL
v	VIEW	NULL
tables	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
loop	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
goto	BASE TABLE	MyISAM
fk2	BASE TABLE	InnoDB
fk	BASE TABLE	InnoDB
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, in reverse alphabetical order, showing just three pieces
of information: the name of the table, its type, and its storage engine.

Each MySQL user has the right to access these tables, but can see only the rows in the tables that correspond to objects for which
the user has the proper access privileges. In some cases (for example, the ROUTINE_DEFINITION column in the INFORMA-
TION_SCHEMA.ROUTINES table), users who have insufficient privileges will see NULL.

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way to provide access to the in-
formation provided by the various SHOW statements that MySQL supports (SHOW DATABASES, SHOW TABLES, and so forth).
Using SELECT has these advantages, compared to SHOW:

• It conforms to Codd's rules. That is, all access is done on tables.

• Nobody needs to learn a new statement syntax. Because they already know how SELECT works, they only need to learn the ob-
ject names.

• The implementor need not worry about adding keywords.

• There are millions of possible output variations, instead of just one. This provides more flexibility for applications that have
varying requirements about what metadata they need.

• Migration is easier because every other DBMS does it this way.

However, because SHOW is popular with MySQL employees and users, and because it might be confusing were it to disappear, the
advantages of conventional syntax are not a sufficient reason to eliminate SHOW. In fact, along with the implementation of IN-
FORMATION_SCHEMA, there are enhancements to SHOW as well. These are described in Chapter 27, Extensions to SHOW State-
ments.

There is no difference between the privileges required for SHOW statements and those required to select information from IN-
FORMATION_SCHEMA. In either case, you have to have some privilege on an object in order to see information about it.

iv

http://dev.mysql.com/doc/refman/5.1/en/use.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/show-tables.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO SQL:2003 standard Part
11 Schemata. Our intent is approximate compliance with SQL:2003 core feature F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity. However, MySQL has omitted many
columns that are not relevant for our implementation, and added columns that are MySQL-specific. One such column is the EN-
GINE column in the INFORMATION_SCHEMA.TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is INFORMATION_SCHEMA.

The following sections describe each of the tables and columns that are in INFORMATION_SCHEMA. For each column, there are
three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA table. This corresponds
to the standard SQL name unless the “Remarks” field says “MySQL extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the value of the column is al-
ways NULL. If this field says “MySQL extension,” the column is a MySQL extension to standard SQL.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we changed the names of some
columns marked “MySQL extension”. (For example, we changed COLLATION to TABLE_COLLATION in the TABLES table.)
See the list of reserved words near the end of this article: ht-
tp://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5.

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N) CHARACTER SET
utf8 where N is at least 64. MySQL uses the default collation for this character set (utf8_general_ci) for all searches, sorts,
comparisons, and other string operations on such columns. If the default collation is not correct for your needs, you can force a suit-
able collation with a COLLATE clause (Using COLLATE in SQL Statements).

Each section indicates what SHOW statement is equivalent to a SELECT that retrieves information from INFORMATION_SCHEMA,
if there is such a statement. For SHOW statements that display information for the current database if you omit a FROM db_name
clause, you can often select information for the current database by adding an AND TABLE_SCHEMA = CURRENT_SCHEMA()
condition to the WHERE clause of a query that retrieves information from an INFORMATION_SCHEMA table.

Note

At present, there are some missing columns and some columns out of order. We are working on this and updating the
documentation as changes are made.

For answers to questions that are often asked concerning the INFORMATION_SCHEMA database, see Chapter 28, MySQL 5.0 FAQ
— INFORMATION_SCHEMA.

INFORMATION_SCHEMA Tables

v

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5
http://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5
http://dev.mysql.com/doc/refman/5.1/en/charset-collations.html#charset-collate
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 1. The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

CATALOG_NAME NULL

SCHEMA_NAME Database

DEFAULT_CHARACTER_SET_NAME

DEFAULT_COLLATION_NAME

SQL_PATH NULL

The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
FROM INFORMATION_SCHEMA.SCHEMATA
[WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
[LIKE 'wild']

1

http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 2. The INFORMATION_SCHEMA TABLES Table
The TABLES table provides information about tables in databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA Table_...

TABLE_NAME Table_...

TABLE_TYPE

ENGINE Engine MySQL extension

VERSION Version The version number of the table's
.frm file, MySQL extension

ROW_FORMAT Row_format MySQL extension

TABLE_ROWS Rows MySQL extension

AVG_ROW_LENGTH Avg_row_length MySQL extension

DATA_LENGTH Data_length MySQL extension

MAX_DATA_LENGTH Max_data_length MySQL extension

INDEX_LENGTH Index_length MySQL extension

DATA_FREE Data_free MySQL extension

AUTO_INCREMENT Auto_increment MySQL extension

CREATE_TIME Create_time MySQL extension

UPDATE_TIME Update_time MySQL extension

CHECK_TIME Check_time MySQL extension

TABLE_COLLATION Collation MySQL extension

CHECKSUM Checksum MySQL extension

CREATE_OPTIONS Create_options MySQL extension

TABLE_COMMENT Comment MySQL extension

Notes:

• TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Table_in_db1.

• TABLE_TYPE should be BASE TABLE or VIEW. Currently, the TABLES table does not list TEMPORARY tables.

• For partitioned tables, beginning with MySQL 5.1.9, the ENGINE column shows the name of the storage engine used by all
partitions. (Previously, this column showed PARTITION for such tables.)

• The TABLE_ROWS column is NULL if the table is in the INFORMATION_SCHEMA database.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also true if the InnoDB table is
partitioned.)

• For tables using the NDBCLUSTER storage engine, beginning with MySQL 5.1.12, the DATA_LENGTH column reflects the true
amount of storage for variable-width columns. (See Bug#18413.)

Note

Because MySQL Cluster allocates storage for variable-width columns in 10-page extents of 32 kilobytes each, space
usage for such columns is reported in increments of 320 KB.

• Beginning with MySQL 5.1.28, the DATA_FREE column shows the free space in bytes for InnoDB tables.

• We have nothing for the table's default character set. TABLE_COLLATION is close, because collation names begin with a char-
acter set name.

• Beginning with MySQL 5.1.9, the CREATE_OPTIONS column shows partitioned if the table is partitioned.

2

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://bugs.mysql.com/18413

The following statements are equivalent:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES
WHERE table_schema = 'db_name'
[AND table_name LIKE 'wild']

SHOW TABLES
FROM db_name
[LIKE 'wild']

The INFORMATION_SCHEMA TABLES Table

3

Chapter 3. The INFORMATION_SCHEMA COLUMNS Table
The COLUMNS table provides information about columns in tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME Field

ORDINAL_POSITION see notes

COLUMN_DEFAULT Default

IS_NULLABLE Null

DATA_TYPE Type

CHARACTER_MAXIMUM_LENGTH Type

CHARACTER_OCTET_LENGTH

NUMERIC_PRECISION Type

NUMERIC_SCALE Type

CHARACTER_SET_NAME

COLLATION_NAME Collation

COLUMN_TYPE Type MySQL extension

COLUMN_KEY Key MySQL extension

EXTRA Extra MySQL extension

PRIVILEGES Privileges MySQL extension

COLUMN_COMMENT Comment MySQL extension

Notes:

• In SHOW, the Type display includes values from several different COLUMNS columns.

• ORDINAL_POSITION is necessary because you might want to say ORDER BY ORDINAL_POSITION. Unlike SHOW, SE-
LECT does not have automatic ordering.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for multi-byte character
sets.

• CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW FULL COLUMNS FROM t, and
you see in the Collation column a value of latin1_swedish_ci, the character set is what is before the first underscore:
latin1.

The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
FROM INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'tbl_name'
[AND table_schema = 'db_name']
[AND column_name LIKE 'wild']

SHOW COLUMNS
FROM tbl_name
[FROM db_name]
[LIKE 'wild']

4

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/select.html

Chapter 4. The INFORMATION_SCHEMA STATISTICS Table
The STATISTICS table provides information about table indexes.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA = Database

TABLE_NAME Table

NON_UNIQUE Non_unique

INDEX_SCHEMA = Database

INDEX_NAME Key_name

SEQ_IN_INDEX Seq_in_index

COLUMN_NAME Column_name

COLLATION Collation

CARDINALITY Cardinality

SUB_PART Sub_part MySQL extension

PACKED Packed MySQL extension

NULLABLE Null MySQL extension

INDEX_TYPE Index_type MySQL extension

COMMENT Comment MySQL extension

Notes:

• There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 returns for sp_statistics,
except that we replaced the name QUALIFIER with CATALOG and we replaced the name OWNER with SCHEMA.

Clearly, the preceding table and the output from SHOW INDEX are derived from the same parent. So the correlation is already
close.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
WHERE table_name = 'tbl_name'
AND table_schema = 'db_name'

SHOW INDEX
FROM tbl_name
FROM db_name

5

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-index.html

Chapter 5. The INFORMATION_SCHEMA USER_PRIVILEGES
Table

The USER_PRIVILEGES table provides information about global privileges. This information comes from the mysql.user
grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG NULL, MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a non-standard table. It takes its values from the mysql.user table.

6

http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES
Table

The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This information comes from the
mysql.db grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG NULL, MySQL extension

TABLE_SCHEMA MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a non-standard table. It takes its values from the mysql.db table.

7

http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 7. The INFORMATION_SCHEMA TABLE_PRIVILEGES
Table

The TABLE_PRIVILEGES table provides information about table privileges. This information comes from the
mysql.tables_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE, REFERENCES, ALTER,
INDEX, DROP, CREATE VIEW.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES
SHOW GRANTS ...

8

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_insert
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_update
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_references
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_alter
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_index
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_drop
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_create-view

Chapter 8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES
Table

The COLUMN_PRIVILEGES table provides information about column privileges. This information comes from the
mysql.columns_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase, for example, se-
lect,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege per row, in uppercase.

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE, REFERENCES.

• If the user has GRANT OPTION privilege, IS_GRANTABLE should be YES. Otherwise, IS_GRANTABLE should be NO. The
output does not list GRANT OPTION as a separate privilege.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES
SHOW GRANTS ...

9

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-columns.html
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_select
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_insert
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_update
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_references
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_grant-option
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_grant-option

Chapter 9. The INFORMATION_SCHEMA CHARACTER_SETS
Table

The CHARACTER_SETS table provides information about available character sets.

INFORMATION_SCHEMA Name SHOW Name Remarks

CHARACTER_SET_NAME Charset

DEFAULT_COLLATE_NAME Default collation

DESCRIPION Description MySQL extension

MAXLEN Maxlen MySQL extension

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
[WHERE name LIKE 'wild']

SHOW CHARACTER SET
[LIKE 'wild']

10

http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 10. The INFORMATION_SCHEMA COLLATIONS Table
The COLLATIONS table provides information about collations for each character set.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset MySQL extension

ID Id MySQL extension

IS_DEFAULT Default MySQL extension

IS_COMPILED Compiled MySQL extension

SORTLEN Sortlen MySQL extension

The following statements are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
[WHERE collation_name LIKE 'wild']

SHOW COLLATION
[LIKE 'wild']

11

http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 11. The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable for what collation. The
columns are equivalent to the first two display fields that we get from SHOW COLLATION.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset

12

http://dev.mysql.com/doc/refman/5.1/en/show-collation.html
http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 12. The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_SCHEMA

TABLE_NAME

CONSTRAINT_TYPE

Notes:

• The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.

• The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name field in the output from
SHOW INDEX when the Non_unique field is 0.

• The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY, FOREIGN KEY, CHECK. This
is a CHAR (not ENUM) column. The CHECK value is not available until we support CHECK.

13

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-index.html
http://dev.mysql.com/doc/refman/5.1/en/char.html
http://dev.mysql.com/doc/refman/5.1/en/enum.html

Chapter 13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE
Table

The KEY_COLUMN_USAGE table describes which key columns have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

POSITION_IN_UNIQUE_CONSTRAINT

REFERENCED_TABLE_SCHEMA

REFERENCED_TABLE_NAME

REFERENCED_COLUMN_NAME

Notes:

• If the constraint is a foreign key, then this is the column of the foreign key, not the column that the foreign key references.

• The value of ORDINAL_POSITION is the column's position within the constraint, not the column's position within the table.
Column positions are numbered beginning with 1.

• The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key constraints. For foreign-key con-
straints, it is the ordinal position in key of the table that is being referenced.

For example, suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(

s1 INT,
s2 INT,
s3 INT,
PRIMARY KEY(s3)

) ENGINE=InnoDB;
CREATE TABLE t3
(

s1 INT,
s2 INT,
s3 INT,
KEY(s1),
CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)

) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3', ORDIN-
AL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2', ORDINAL_POSITION =
1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

14

http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 14. The INFORMATION_SCHEMA ROUTINES Table
The ROUTINES table provides information about stored routines (both procedures and functions). The ROUTINES table does not
include user-defined functions (UDFs) at this time.

The column named “mysql.proc name” indicates the mysql.proc table column that corresponds to the INFORMA-
TION_SCHEMA.ROUTINES table column, if any.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_NAME specific_name

ROUTINE_CATALOG NULL

ROUTINE_SCHEMA db

ROUTINE_NAME name

ROUTINE_TYPE type {PROCEDURE|FUNCTION}

DTD_IDENTIFIER data type descriptor

ROUTINE_BODY SQL

ROUTINE_DEFINITION body

EXTERNAL_NAME NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE SQL

IS_DETERMINISTIC is_deterministic

SQL_DATA_ACCESS sql_data_access

SQL_PATH NULL

SECURITY_TYPE security_type

CREATED created

LAST_ALTERED modified

SQL_MODE sql_mode MySQL extension

ROUTINE_COMMENT comment MySQL extension

DEFINER definer MySQL extension

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

DATABASE_COLLATION MySQL extension

Notes:

• MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not have external lan-
guages yet, so it is always NULL.

• CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the routine was
created. COLLATION_CONNECTION is the session value of the collation_connection system variable when the
routine was created. DATABASE_COLLATION is the collation of the database with which the routine is associated. These
columns were added in MySQL 5.1.21.

15

http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_character_set_client
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_collation_connection

Chapter 15. The INFORMATION_SCHEMA VIEWS Table
The VIEWS table provides information about views in databases. You must have the SHOW VIEW privilege to access this table.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

VIEW_DEFINITION

CHECK_OPTION

IS_UPDATABLE

DEFINER

SECURITY_TYPE

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

Notes:

• The VIEW_DEFINITION column has most of what you see in the Create Table field that SHOW CREATE VIEW pro-
duces. Skip the words before SELECT and skip the words WITH CHECK OPTION. Suppose that the original statement was:

CREATE VIEW v AS
SELECT s2,s1 FROM t
WHERE s1 > 5
ORDER BY s1
WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• The CHECK_OPTION column has a value of NONE, CASCADE, or LOCAL.

• MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if UPDATE and DE-
LETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO (false). The IS_UPDATABLE column in
the VIEWS table displays the status of this flag. It means that the server always knows whether a view is updatable. If the view
is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and will be rejected. (Note that even if a view is
updatable, it might not be possible to insert into it; for details, refer to CREATE VIEW Syntax.)

• The DEFINER column indicates who defined the view. SECURITY_TYPE has a value of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the view was cre-
ated. COLLATION_CONNECTION is the session value of the collation_connection system variable when the view was
created. These columns were added in MySQL 5.1.21.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support. For example, you might use
the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL concatenation operator, the double bar (||), in your
queries. If you then create a view that concatenates items, you might worry that changing the sql_mode setting to a value differ-
ent from ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a view definition,
MySQL always stores it the same way, in a canonical form. Here is an example that shows how the server changes a double bar
concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS

-> WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)

16

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_show-view
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-create-view.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/create-view.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/update.html
http://dev.mysql.com/doc/refman/5.1/en/delete.html
http://dev.mysql.com/doc/refman/5.1/en/insert.html
http://dev.mysql.com/doc/refman/5.1/en/create-view.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_character_set_client
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html#sqlmode_ansi
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html#sqlmode_ansi
http://dev.mysql.com/doc/refman/5.1/en/string-functions.html#function_concat

The advantage of storing a view definition in canonical form is that changes made later to the value of sql_mode will not affect
the results from the view. However an additional consequence is that comments prior to SELECT are stripped from the definition
by the server.

The INFORMATION_SCHEMA VIEWS Table

17

http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.1/en/select.html

Chapter 16. The INFORMATION_SCHEMA TRIGGERS Table
The TRIGGERS table provides information about triggers. You must have the TRIGGER privilege to access this table (prior to
MySQL 5.1.22, you must have the SUPER privilege).

INFORMATION_SCHEMA Name SHOW Name Remarks

TRIGGER_CATALOG NULL

TRIGGER_SCHEMA

TRIGGER_NAME Trigger

EVENT_MANIPULATION Event

EVENT_OBJECT_CATALOG NULL

EVENT_OBJECT_SCHEMA

EVENT_OBJECT_TABLE Table

ACTION_ORDER 0

ACTION_CONDITION NULL

ACTION_STATEMENT Statement

ACTION_ORIENTATION ROW

ACTION_TIMING Timing

ACTION_REFERENCE_OLD_TABLE NULL

ACTION_REFERENCE_NEW_TABLE NULL

ACTION_REFERENCE_OLD_ROW OLD

ACTION_REFERENCE_NEW_ROW NEW

CREATED NULL (0)

SQL_MODE MySQL extension

DEFINER MySQL extension

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

DATABASE_COLLATION MySQL extension

Notes:

• The TRIGGER_SCHEMA and TRIGGER_NAME columns contain the name of the database in which the trigger occurs and the
trigger name, respectively.

• The EVENT_MANIPULATION column contains one of the values 'INSERT', 'DELETE', or 'UPDATE'.

• As noted in Using Triggers, every trigger is associated with exactly one table. The EVENT_OBJECT_SCHEMA and
EVENT_OBJECT_TABLE columns contain the database in which this table occurs, and the table's name.

• The ACTION_ORDER statement contains the ordinal position of the trigger's action within the list of all similar triggers on the
same table. Currently, this value is always 0, because it is not possible to have more than one trigger with the same
EVENT_MANIPULATION and ACTION_TIMING on the same table.

• The ACTION_STATEMENT column contains the statement to be executed when the trigger is invoked. This is the same as the
text displayed in the Statement column of the output from SHOW TRIGGERS. Note that this text uses UTF-8 encoding.

• The ACTION_ORIENTATION column always contains the value 'ROW'.

• The ACTION_TIMING column contains one of the two values 'BEFORE' or 'AFTER'.

• The columns ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW contain the old and new column
identifiers, respectively. This means that ACTION_REFERENCE_OLD_ROW always contains the value 'OLD' and AC-
TION_REFERENCE_NEW_ROW always contains the value 'NEW'.

• The SQL_MODE column shows the server SQL mode that was in effect at the time when the trigger was created (and thus
which remains in effect for this trigger whenever it is invoked, regardless of the current server SQL mode). The possible range
of values for this column is the same as that of the sql_mode system variable. See Server SQL Modes.

18

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_trigger
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_super
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/triggers.html
http://dev.mysql.com/doc/refman/5.1/en/show-triggers.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.1/en/server-sql-mode.html

• The DEFINER column was added in MySQL 5.1.2. DEFINER indicates who defined the trigger.

• CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the trigger was
created. COLLATION_CONNECTION is the session value of the collation_connection system variable when the trig-
ger was created. DATABASE_COLLATION is the collation of the database with which the trigger is associated. These columns
were added in MySQL 5.1.21.

• The following columns currently always contain NULL: TRIGGER_CATALOG, EVENT_OBJECT_CATALOG, AC-
TION_CONDITION, ACTION_REFERENCE_OLD_TABLE, ACTION_REFERENCE_NEW_TABLE, and CREATED.

Example, using the ins_sum trigger defined in Using Triggers:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS\G
*************************** 1. row ***************************

TRIGGER_CATALOG: NULL
TRIGGER_SCHEMA: test
TRIGGER_NAME: ins_sum

EVENT_MANIPULATION: INSERT
EVENT_OBJECT_CATALOG: NULL
EVENT_OBJECT_SCHEMA: test
EVENT_OBJECT_TABLE: account

ACTION_ORDER: 0
ACTION_CONDITION: NULL
ACTION_STATEMENT: SET @sum = @sum + NEW.amount

ACTION_ORIENTATION: ROW
ACTION_TIMING: BEFORE

ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
ACTION_REFERENCE_OLD_ROW: OLD
ACTION_REFERENCE_NEW_ROW: NEW

CREATED: NULL
SQL_MODE:
DEFINER: me@localhost

See also SHOW TRIGGERS Syntax.

The INFORMATION_SCHEMA TRIGGERS Table

19

http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_character_set_client
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_collation_connection
http://dev.mysql.com/doc/refman/5.1/en/triggers.html
http://dev.mysql.com/doc/refman/5.1/en/show-triggers.html

Chapter 17. The INFORMATION_SCHEMA PLUGINS Table
The PLUGINS table provides information about server plugins.

INFORMATION_SCHEMA Name SHOW Name Remarks

PLUGIN_NAME Name MySQL extension

PLUGIN_VERSION MySQL extension

PLUGIN_STATUS Status MySQL extension

PLUGIN_TYPE Type MySQL extension

PLUGIN_TYPE_VERSION MySQL extension

PLUGIN_LIBRARY Library MySQL extension

PLUGIN_LIBRARY_VERSION MySQL extension

PLUGIN_AUTHOR MySQL extension

PLUGIN_DESCRIPTION MySQL extension

PLUGIN_LICENSE MySQL extension

Notes:

• The PLUGINS table is a non-standard table. It was added in MySQL 5.1.5.

• The PLUGIN_LICENSE column was added in MySQL 5.1.12.

See also SHOW PLUGINS Syntax.

20

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-plugins.html

Chapter 18. The INFORMATION_SCHEMA ENGINES Table
The PLUGINS table provides information about storage engines.

INFORMATION_SCHEMA Name SHOW Name Remarks

ENGINE Engine MySQL extension

SUPPORT Support MySQL extension

COMMENT Comment MySQL extension

TRANSACTIONS Transactions MySQL extension

XA XA MySQL extension

SAVEPOINTS Savepoints MySQL extension

Notes:

• The ENGINES table is a non-standard table. It was added in MySQL 5.1.5.

See also SHOW ENGINES Syntax.

21

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-engines.html

Chapter 19. The INFORMATION_SCHEMA PARTITIONS Table
The PARTITIONS table provides information about table partitions. See Partitioning, for more information about partitioning
tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

PARTITION_NAME MySQL extension

SUBPARTITION_NAME MySQL extension

PARTITION_ORDINAL_POSITION MySQL extension

SUBPARTITION_ORDINAL_POSITION MySQL extension

PARTITION_METHOD MySQL extension

SUBPARTITION_METHOD MySQL extension

PARTITION_EXPRESSION MySQL extension

SUBPARTITION_EXPRESSION MySQL extension

PARTITION_DESCRIPTION MySQL extension

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

CHECKSUM MySQL extension

PARTITION_COMMENT MySQL extension

NODEGROUP MySQL extension

TABLESPACE_NAME MySQL extension

Notes:

• The PARTITIONS table is a non-standard table. It was added in MySQL 5.1.6.

Each record in this table corresponds to an individual partition or subpartition of a partitioned table.

• TABLE_CATALOG: This column is always NULL.

• TABLE_SCHEMA: This column contains the name of the database to which the table belongs.

• TABLE_NAME: This column contains the name of the table containing the partition.

• PARTITION_NAME: The name of the partition.

• SUBPARTITION_NAME: If the PARTITIONS table record represents a subpartition, then this column contains the name of
subpartition; otherwise it is NULL.

• PARTITION_ORDINAL_POSITION: All partitions are indexed in the same order as they are defined, with 1 being the num-
ber assigned to the first partition. The indexing can change as partitions are added, dropped, and reorganized; the number
shown is this column reflects the current order, taking into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION: Subpartitions within a given partition are also indexed and reindexed in the same
manner as partitions are indexed within a table.

22

http://dev.mysql.com/doc/refman/5.1/en/partitioning.html
http://dev.mysql.com/doc/refman/5.1/en/show.html

• PARTITION_METHOD: One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the
available partitioning types as discussed in Partition Types.

• SUBPARTITION_METHOD: One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the available
subpartitioning types as discussed in Subpartitioning.

• PARTITION_EXPRESSION: This is the expression for the partitioning function used in the CREATE TABLE or ALTER
TABLE statement that created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
c1 INT,
c2 INT,
c3 VARCHAR(25)

)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table record for a partition from this table displays c1 + c2, as
shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
> FROM INFORMATION_SCHEMA.PARTITIONS
> WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';

+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+
1 row in set (0.09 sec)

• SUBPARTITION_EXPRESSION: This works in the same fashion for the subpartitioning expression that defines the subparti-
tioning for a table as PARTITION_EXPRESSION does for the partitioning expression used to define a table's partitioning.

If the table has no subpartitions, then this column is NULL.

• PARTITION_DESCRIPTION: This column is used for RANGE and LIST partitions. For a RANGE partition, it contains the
value set in the partition's VALUES LESS THAN clause, which can be either an integer or MAXVALUE. For a LIST partition,
this column contains the values defined in the partition's VALUES IN clause, which is a comma-separated list of integer val-
ues.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

• TABLE_ROWS: The number of table rows in the partition.

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated value used in SQL op-
timization, and may not always be exact.

• AVG_ROW_LENGTH: The average length of the rows stored in this partition or subpartition, in bytes.

This is the same as DATA_LENGTH divided by TABLE_ROWS.

• DATA_LENGTH: The total length of all rows stored in this partition or subpartition, in bytes — that is, the total number of bytes
stored in the partition or subpartition.

• MAX_DATA_LENGTH: The maximum number of bytes that can be stored in this partition or subpartition.

• INDEX_LENGTH: The length of the index file for this partition or subpartition, in bytes.

• DATA_FREE: The number of bytes allocated to the partition or subpartition but not used.

• CREATE_TIME: The time of the partition's or subpartition's creation.

• UPDATE_TIME: The time that the partition or subpartition was last modified.

• CHECK_TIME: The last time that the table to which this partition or subpartition belongs was checked.

Note

Some storage engines do not update this time; for tables using these storage engines, this value is always NULL.

• CHECKSUM: The checksum value, if any; otherwise, this column is NULL.

The INFORMATION_SCHEMA PARTITIONS Table

23

http://dev.mysql.com/doc/refman/5.1/en/partitioning-types.html
http://dev.mysql.com/doc/refman/5.1/en/partitioning-subpartitions.html
http://dev.mysql.com/doc/refman/5.1/en/create-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html
http://dev.mysql.com/doc/refman/5.1/en/alter-table.html

• PARTITION_COMMENT: This column contains the text of any comment made for the partition.

The default value for this column is an empty string.

• NODEGROUP: This is the nodegroup to which the partition belongs. This is relevant only to MySQL Cluster tables; otherwise
the value of this column is always 0.

• TABLESPACE_NAME: This column contains the name of tablespace to which the partition belongs. In MySQL 5.1, the value of
this column is always DEFAULT.

•
Important

If any partitioned tables created in a MySQL version prior to MySQL 5.1.6 are present following an upgrade to
MySQL 5.1.6 or later, it is not possible to SELECT from, SHOW, or DESCRIBE the PARTITIONS table. See
Changes in MySQL 5.1.6 before upgrading from MySQL 5.1.5 or earlier to MySQL 5.1.6 or later.

• A non-partitioned table has one record in INFORMATION_SCHEMA.PARTITIONS; however, the values of the PARTI-
TION_NAME, SUBPARTITION_NAME, PARTITION_ORDINAL_POSITION, SUBPARTITION_ORDINAL_POSITION,
PARTITION_METHOD, SUBPARTITION_METHOD, PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and
PARTITION_DESCRIPTION columns are all NULL. (The PARTITION_COMMENT column in this case is blank.)

In MySQL 5.1, there is also only one record in the PARTITIONS table for a table using the NDBCLUSTER storage engine. The
same columns are also NULL (or empty) as for a non-partitioned table.

The INFORMATION_SCHEMA PARTITIONS Table

24

http://dev.mysql.com/doc/refman/5.1/en/select.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/describe.html
http://dev.mysql.com/doc/refman/5.1/en/news-5-1-6.html

Chapter 20. The INFORMATION_SCHEMA EVENTS Table
The EVENTS table provides information about scheduled events, which are discussed in Using the Event Scheduler.

INFORMATION_SCHEMA Name SHOW Name Remarks

EVENT_CATALOG NULL, MySQL extension

EVENT_SCHEMA Db MySQL extension

EVENT_NAME Name MySQL extension

DEFINER Definer MySQL extension

TIME_ZONE Time zone MySQL extension

EVENT_BODY MySQL extension

EVENT_DEFINITION MySQL extension

EVENT_TYPE Type MySQL extension

EXECUTE_AT Execute at MySQL extension

INTERVAL_VALUE Interval value MySQL extension

INTERVAL_FIELD Interval field MySQL extension

SQL_MODE MySQL extension

STARTS Starts MySQL extension

ENDS Ends MySQL extension

STATUS Status MySQL extension

ON_COMPLETION MySQL extension

CREATED MySQL extension

LAST_ALTERED MySQL extension

LAST_EXECUTED MySQL extension

EVENT_COMMENT MySQL extension

ORIGINATOR Originator MySQL extension

CHARACTER_SET_CLIENT MySQL extension

COLLATION_CONNECTION MySQL extension

DATABASE_COLLATION MySQL extension

Notes:

• The EVENTS table is a non-standard table. It was added in MySQL 5.1.6.

• EVENT_CATALOG: The value of this column is always NULL.

• EVENT_SCHEMA: The name of the schema (database) to which this event belongs.

• EVENT_NAME: The name of the event.

• DEFINER: The user who created the event. Always displayed in 'user_name'@'host_name' format.

• TIME_ZONE: The time zone in effect when schedule for the event was last modified. If the event's schedule has not been modi-
fied since the event was created, then this is the time zone that was in effect at the event's creation. The default value is SYS-
TEM.

This column was added in MySQL 5.1.17. See Changes in MySQL 5.1.17, for important information if you are using the Event
Scheduler and are upgrading from MySQL 5.1.16 (or earlier) to MySQL 5.1.17 (or later).

• EVENT_BODY: The language used for the statements in the event's DO clause; in MySQL 5.1, this is always SQL.

This column was added in MySQL 5.1.12. It is not to be confused with the column of the same name (now named
EVENT_DEFINITION) that existed in earlier MySQL versions.

• EVENT_DEFINITION: The text of the SQL statement making up the event's DO clause; in other words, the statement executed
by this event.

25

http://dev.mysql.com/doc/refman/5.1/en/events.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/news-5-1-17.html
http://dev.mysql.com/doc/refman/5.1/en/do.html
http://dev.mysql.com/doc/refman/5.1/en/do.html

Note

Prior to MySQL 5.1.12, this column was named EVENT_BODY.

• EVENT_TYPE: One of the two values ONE TIME or RECURRING.

• EXECUTE_AT: For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT statement
used to create the event, or of the last ALTER EVENT statement that modified the event. The value shown in this column re-
flects the addition or subtraction of any INTERVAL value included in the event's AT clause. For example, if an event is created
using ON SCHEDULE AT CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at 2006-02-09
14:05:30, the value shown in this column would be '2006-02-10 20:05:30'.

If the event's timing is determined by an EVERY clause instead of an AT clause (that is, if the event is recurring), the value of
this column is NULL.

• INTERVAL_VALUE: For recurring events, this column contains the numeric portion of the event's EVERY clause.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column's value is NULL.

• INTERVAL_FIELD: For recurring events, this column contains the units portion of the EVERY clause governing the timing of
the event. Thus, this column contains a value such as 'YEAR', 'QUARTER', 'DAY', and so on.

Note

In early MySQL 5.1 releases, this value was prefixed with 'INTERVAL_', and was displayed as 'INTERVAL_YEAR',
'INTERVAL_QUARTER', 'INTERVAL_DAY', and so on.

For a one-time event (that is, an event whose timing is determined by an AT clause), this column's value is NULL.

• SQL_MODE: The SQL mode in effect at the time the event was created or altered.

• STARTS: For a recurring event whose definition includes a STARTS clause, this column contains the corresponding DATE-
TIME value. As with the EXECUTE_AT column, this value resolves any expressions used.

If there is no STARTS clause affecting the timing of the event, this column is empty. (Prior to MySQL 5.1.8, it contained NULL
in such cases.)

• ENDS: For a recurring event whose definition includes a ENDS clause, this column contains the corresponding DATETIME
value. As with the EXECUTE_AT column (see previous example), this value resolves any expressions used.

If there is no ENDS clause affecting the timing of the event, this column contains NULL.

• STATUS: One of the three values ENABLED, DISABLED, or SLAVESIDE_DISABLED.

SLAVESIDE_DISABLED was added to the list of possible values for this column in MySQL 5.1.18. This value indicates that
the creation of the event occurred on another MySQL server acting as a replication master and was replicated to the current
MySQL server which is acting as a slave, but the event is not presently being executed on the slave. See Replication of Invoked
Features, for more information.

• ON_COMPLETION: One of the two values PRESERVE or NOT PRESERVE.

• CREATED: The date and time when the event was created. This is a DATETIME value.

• LAST_ALTERED: The date and time when the event was last modified. This is a DATETIME value. If the event has not been
modified since its creation, this column holds the same value as the CREATED column.

• LAST_EXECUTED: The date and time when the event last executed. A DATETIME value. If the event has never executed, this
column's value is NULL.

Before MySQL 5.1.23, LAST_EXECUTED indicates when event finished executing. As of 5.1.23, LAST_EXECUTED instead
indicates when the event started. As a result, the ENDS column is never less than LAST_EXECUTED.

• EVENT_COMMENT: The text of a comment, if the event has one. If there is no comment, the value of this column is an empty
string.

• ORIGINATOR: The server ID of the MySQL server on which the event was created; used in replication. The default value is 0.
This column was added in MySQL 5.1.18.

• CHARACTER_SET_CLIENT is the session value of the character_set_client system variable when the event was cre-
ated. COLLATION_CONNECTION is the session value of the collation_connection system variable when the event

The INFORMATION_SCHEMA EVENTS Table

26

http://dev.mysql.com/doc/refman/5.1/en/datetime.html
http://dev.mysql.com/doc/refman/5.1/en/create-event.html
http://dev.mysql.com/doc/refman/5.1/en/alter-event.html
http://dev.mysql.com/doc/refman/5.1/en/year.html
http://dev.mysql.com/doc/refman/5.1/en/datetime.html
http://dev.mysql.com/doc/refman/5.1/en/datetime.html
http://dev.mysql.com/doc/refman/5.1/en/datetime.html
http://dev.mysql.com/doc/refman/5.1/en/replication-features-invoked.html
http://dev.mysql.com/doc/refman/5.1/en/replication-features-invoked.html
http://dev.mysql.com/doc/refman/5.1/en/datetime.html
http://dev.mysql.com/doc/refman/5.1/en/datetime.html
http://dev.mysql.com/doc/refman/5.1/en/datetime.html
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_character_set_client
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_collation_connection

was created. DATABASE_COLLATION is the collation of the database with which the event is associated. These columns were
added in MySQL 5.1.21.

Example: Suppose the user jon@ghidora creates an event named e_daily, and then modifies it a few minutes later using an
ALTER EVENT statement, as shown here:

DELIMITER |
CREATE EVENT e_daily

ON SCHEDULE
EVERY 1 DAY

COMMENT 'Saves total number of sessions then clears the table each day'
DO
BEGIN
INSERT INTO site_activity.totals (time, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;

DELETE FROM site_activity.sessions;
END |

DELIMITER ;
ALTER EVENT e_daily

ENABLED;

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
> WHERE EVENT_NAME = 'e_daily'
> AND EVENT_SCHEMA = 'myschema'\G

*************************** 1. row ***************************
EVENT_CATALOG: NULL
EVENT_SCHEMA: test
EVENT_NAME: e_daily

DEFINER: paul@localhost
TIME_ZONE: SYSTEM

EVENT_BODY: SQL
EVENT_DEFINITION: BEGIN

INSERT INTO site_activity.totals (time, total)
SELECT CURRENT_TIMESTAMP, COUNT(*)
FROM site_activity.sessions;

DELETE FROM site_activity.sessions;
END

EVENT_TYPE: RECURRING
EXECUTE_AT: NULL

INTERVAL_VALUE: 1
INTERVAL_FIELD: DAY

SQL_MODE:
STARTS: 2008-09-03 12:13:39
ENDS: NULL

STATUS: ENABLED
ON_COMPLETION: NOT PRESERVE

CREATED: 2008-09-03 12:13:39
LAST_ALTERED: 2008-09-03 12:13:39
LAST_EXECUTED: NULL
EVENT_COMMENT: Saves total number of sessions then clears the

table each day
ORIGINATOR: 1

CHARACTER_SET_CLIENT: latin1
COLLATION_CONNECTION: latin1_swedish_ci
DATABASE_COLLATION: latin1_swedish_ci

Prior to MySQL 5.1.17, the times displayed in the STARTS, ENDS, and LAST_EXECUTED columns were given in terms of Uni-
versal Time (GMT or UTC), regardless of the server's time zone setting (Bug#16420). Beginning with MySQL 5.1.17, these times
are all given in terms of local time as determined by the MySQL server's time_zone setting. (The same was true of the starts,
ends, and last_executed columns of the mysql.event table as well as the Starts and Ends columns in the output of
SHOW [FULL] EVENTS.)

The CREATED and LAST_ALTERED columns use the server time zone (as do the created and last_altered columns of the
mysql.event table).

See also SHOW EVENTS Syntax.

The INFORMATION_SCHEMA EVENTS Table

27

http://dev.mysql.com/doc/refman/5.1/en/alter-event.html
http://dev.mysql.com/doc/refman/5.1/en/select.html
http://bugs.mysql.com/16420
http://dev.mysql.com/doc/refman/5.1/en/server-system-variables.html#sysvar_time_zone
http://dev.mysql.com/doc/refman/5.1/en/show-events.html

Chapter 21. The INFORMATION_SCHEMA FILES Table
The FILES table provides information about the files in which MySQL NDB Disk Data tables are stored.

INFORMATION_SCHEMA Name SHOW Name Remarks

FILE_ID MySQL extension

FILE_NAME MySQL extension

FILE_TYPE MySQL extension

TABLESPACE_NAME MySQL extension

TABLE_CATALOG MySQL extension

TABLE_SCHEMA MySQL extension

TABLE_NAME MySQL extension

LOGFILE_GROUP_NAME MySQL extension

LOGFILE_GROUP_NUMBER MySQL extension

ENGINE MySQL extension

FULLTEXT_KEYS MySQL extension

DELETED_ROWS MySQL extension

UPDATE_COUNT MySQL extension

FREE_EXTENTS MySQL extension

TOTAL_EXTENTS MySQL extension

EXTENT_SIZE MySQL extension

INITIAL_SIZE MySQL extension

MAXIMUM_SIZE MySQL extension

AUTOEXTEND_SIZE MySQL extension

CREATION_TIME MySQL extension

LAST_UPDATE_TIME MySQL extension

LAST_ACCESS_TIME MySQL extension

RECOVER_TIME MySQL extension

TRANSACTION_COUNTER MySQL extension

VERSION MySQL extension

ROW_FORMAT MySQL extension

TABLE_ROWS MySQL extension

AVG_ROW_LENGTH MySQL extension

DATA_LENGTH MySQL extension

MAX_DATA_LENGTH MySQL extension

INDEX_LENGTH MySQL extension

DATA_FREE MySQL extension

CREATE_TIME MySQL extension

UPDATE_TIME MySQL extension

CHECK_TIME MySQL extension

CHECKSUM MySQL extension

STATUS MySQL extension

EXTRA MySQL extension

Notes:

• FILE_ID column values are auto-generated.

• FILE_NAME is the name of an UNDO log file created by CREATE LOGFILE GROUP or ALTER LOGFILE GROUP, or of a
data file created by CREATE TABLESPACE or ALTER TABLESPACE.

28

http://dev.mysql.com/doc/refman/5.1/en/show.html

• FILE_TYPE is one of the values UNDOFILE or DATAFILE.

• TABLESPACE_NAME is the name of the tablespace with which the file is associated.

• Currently, the value of the TABLESPACE_CATALOG column is always NULL.

• TABLE_NAME is the name of the Disk Data table with which the file is associated, if any.

• The LOGFILE_GROUP_NAME column gives the name of the log file group to which the log file or data file belongs.

• For an UNDO log file, the LOGFILE_GROUP_NUMBER contains the auto-generated ID number of the log file group to which
the log file belongs.

• For a MySQL Cluster Disk Data log file or data file, the value of the ENGINE column is always NDB or NDBCLUSTER.

• For a MySQL Cluster Disk Data log file or data file, the value of the FULLTEXT_KEYS column is always empty.

• The FREE EXTENTS column displays the number of extents which have not yet been used by the file. The TOTAL EXTENTS
column show the total number of extents allocated to the file.

The difference between these two columns is the number of extents currently in use by the file:

SELECT TOTAL_EXTENTS - FREE_EXTENTS AS extents_used
FROM INFORMATION_SCHEMA.FILES
WHERE FILE_NAME = 'myfile.dat';

You can approximate the amount of disk space in use by the file by multiplying this difference by the value of the EX-
TENT_SIZE column, which gives the size of an extent for the file in bytes:

SELECT (TOTAL_EXTENTS - FREE_EXTENTS) * EXTENT_SIZE AS bytes_used
FROM INFORMATION_SCHEMA.FILES
WHERE FILE_NAME = 'myfile.dat';

Similarly, you can estimate the amount of space that remains available in a given file by multiplying FREE_EXTENTS by EX-
TENT_SIZE:

SELECT FREE_EXTENTS * EXTENT_SIZE AS bytes_free
FROM INFORMATION_SCHEMA.FILES
WHERE FILE_NAME = 'myfile.dat';

Important

The byte values produced by the preceding queries are approximations only, and their precision is inversely propor-
tional to the value of EXTENT_SIZE. That is, the larger EXTENT_SIZE becomes, the less accurate the approxima-
tions are.

It is also important to remember that once an extent is used, it cannot be freed again without dropping the data file of which it is
a part. This means that deletes from a Disk Data table do not release disk space.

The extent size can be set in a CREATE TABLESPACE statement. See CREATE TABLESPACE Syntax, for more information.

• The INITIAL_SIZE column shows the size in bytes of the file. This is the same value that was used in the INITIAL_SIZE
clause of the CREATE LOGFILE GROUP, ALTER LOGFILE GROUP, CREATE TABLESPACE, or ALTER TABLESPACE
statement used to create the file.

For MySQL Cluster Disk Data files, the value of the MAXIMUM_SIZE column is always the same as INITIAL_SIZE, and
the AUTOEXTEND_SIZE column is always empty.

• The CREATION_TIME column shows the date and time when the file was created. The LAST_UPDATE_TIME column dis-
plays the date and time when the file was last modified. The LAST_ACCESSED column provides the date and time when the
file was last accessed by the server.

Currently, the values of these columns are as reported by the operating system, and are not supplied by the NDB storage engine.
Where no value is provided by the operating system, these columns display 0000-00-00 00:00:00.

• For MySQL Cluster Disk Data files, the value of the RECOVER_TIME and TRANSACTION_COUNTER columns is always 0.

• For MySQL Cluster Disk Data files, the following columns are always NULL:

• VERSION

• ROW_FORMAT

The INFORMATION_SCHEMA FILES Table

29

http://dev.mysql.com/doc/refman/5.1/en/create-tablespace.html

• TABLE_ROWS

• AVG_ROW_LENGTH

• DATA_LENGTH

• MAX_DATA_LENGTH

• INDEX_LENGTH

• DATA_FREE

• CREATE_TIME

• UPDATE_TIME

• CHECK_TIME

• CHECKSUM

• For MySQL Cluster Disk Data files, the value of the STATUS column is always NORMAL.

• For MySQL Cluster Disk Data files, the EXTRA column shows which data node the file belongs to, as each data node has its
own copy of the file. For example, suppose you use this statement on a MySQL Cluster with four data nodes:

CREATE LOGFILE GROUP mygroup
ADD UNDOFILE 'new_undo.dat'
INITIAL_SIZE 2G
ENGINE NDB;

After running the CREATE LOGFILE GROUP statement successfully, you should see a result similar to the one shown here
for this query against the FILES table:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_TYPE, EXTRA
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE FILE_NAME = 'new_undo.dat';

+--------------------+-------------+----------------+
| LOGFILE_GROUP_NAME | FILE_TYPE | EXTRA |
+--------------------+-------------+----------------+
mygroup	UNDO FILE	CLUSTER_NODE=3
mygroup	UNDO FILE	CLUSTER_NODE=4
mygroup	UNDO FILE	CLUSTER_NODE=5
mygroup	UNDO FILE	CLUSTER_NODE=6
+--------------------+-------------+----------------+
4 rows in set (0.01 sec)

• The FILES table is a non-standard table. It was added in MySQL 5.1.6.

• Beginning with MySQL 5.1.14, an additional row is present in the FILES table following the creation of a logfile group. This
row has NULL for the value of the FILE_NAME column. For this row, the value of the FILE_ID column is always 0, that of
the FILE_TYPE column is always UNDO FILE, and that of the STATUS column is always NORMAL. Currently, the value of
the ENGINE column is always NDBCLUSTER.

The FREE_EXTENTS column in this row shows the total number of free extents available to all undo files belonging to a given
log file group whose name and number are shown in the LOGFILE_GROUP_NAME and LOGFILE_GROUP_NUMBER
columns, respectively.

Suppose there are no existing log file groups on your MySQL Cluster, and you create one using the following statement:

mysql> CREATE LOGFILE GROUP lg1
-> ADD UNDOFILE 'undofile.dat'
-> INITIAL_SIZE = 16M
-> UNDO_BUFFER_SIZE = 1M
-> ENGINE = NDB;

Query OK, 0 rows affected (3.81 sec)

You can now see this NULL row when you query the FILES table:

mysql> SELECT DISTINCT
-> FILE_NAME AS File,
-> FREE_EXTENTS AS Free,
-> TOTAL_EXTENTS AS Total,
-> EXTENT_SIZE AS Size,
-> INITIAL_SIZE AS Initial
-> FROM INFORMATION_SCHEMA.FILES;

+--------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |

The INFORMATION_SCHEMA FILES Table

30

+--------------+---------+---------+------+----------+
| undofile.dat | NULL | 4194304 | 4 | 16777216 |
| NULL | 4184068 | NULL | 4 | NULL |
+--------------+---------+---------+------+----------+
2 rows in set (0.01 sec)

The total number of free extents available for undo logging is always somewhat less than the sum of the TOTAL_EXTENTS
column values for all undo files in the log file group due to overhead required for maintaining the undo files. This can be seen
by adding a second undo file to the log file group, then repeating the previous query against the FILES table:

mysql> ALTER LOGFILE GROUP lg1
-> ADD UNDOFILE 'undofile02.dat'
-> INITIAL_SIZE = 4M
-> ENGINE = NDB;

Query OK, 0 rows affected (1.02 sec)
mysql> SELECT DISTINCT

-> FILE_NAME AS File,
-> FREE_EXTENTS AS Free,
-> TOTAL_EXTENTS AS Total,
-> EXTENT_SIZE AS Size,
-> INITIAL_SIZE AS Initial
-> FROM INFORMATION_SCHEMA.FILES;

+----------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+----------------+---------+---------+------+----------+
undofile.dat	NULL	4194304	4	16777216
undofile02.dat	NULL	1048576	4	4194304
NULL	5223944	NULL	4	NULL
+----------------+---------+---------+------+----------+
3 rows in set (0.01 sec)

The amount of free space in bytes which is available for undo logging by Disk Data tables using this log file group can be ap-
proximated by multiplying the number of free extents by the initial size:

mysql> SELECT
-> FREE_EXTENTS AS 'Free Extents',
-> FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE LOGFILE_GROUP_NAME = 'lg1'
-> AND FILE_NAME IS NULL;

+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5223944 | 20895776 |
+--------------+------------+
1 row in set (0.02 sec)

If you create a MySQL Cluster Disk Data table and then insert some rows into it, you can see approximately how much space
remains for undo logging afterwards, for example:

mysql> CREATE TABLESPACE ts1
-> ADD DATAFILE 'data1.dat'
-> USE LOGFILE GROUP lg1
-> INITIAL_SIZE 512M
-> ENGINE = NDB;

Query OK, 0 rows affected (8.71 sec)
mysql> CREATE TABLE dd (

-> c1 INT NOT NULL PRIMARY KEY,
-> c2 INT,
-> c3 DATE
->)
-> TABLESPACE ts1 STORAGE DISK
-> ENGINE = NDB;

Query OK, 0 rows affected (2.11 sec)
mysql> INSERT INTO dd VALUES

-> (NULL, 1234567890, '2007-02-02'),
-> (NULL, 1126789005, '2007-02-03'),
-> (NULL, 1357924680, '2007-02-04'),
-> (NULL, 1642097531, '2007-02-05');

Query OK, 4 rows affected (0.01 sec)
mysql> SELECT

-> FREE_EXTENTS AS 'Free Extents',
-> FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
-> FROM INFORMATION_SCHEMA.FILES
-> WHERE LOGFILE_GROUP_NAME = 'lg1'
-> AND FILE_NAME IS NULL;

+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5207565 | 20830260 |
+--------------+------------+
1 row in set (0.01 sec)

• There are no SHOW commands associated with the FILES table.

• For additional information, and examples of creating and dropping MySQL Cluster Disk Data objects, see MySQL Cluster Disk

The INFORMATION_SCHEMA FILES Table

31

http://dev.mysql.com/doc/refman/5.1/en/show.html

Data Tables.

The INFORMATION_SCHEMA FILES Table

32

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data.html

Chapter 22. The INFORMATION_SCHEMA PROCESSLIST Table
The PROCESSLIST table provides information about which threads are running.

INFORMATION_SCHEMA Name SHOW Name Remarks

ID Id MySQL extension

USER User MySQL extension

HOST Host MySQL extension

DB db MySQL extension

COMMAND Command MySQL extension

TIME Time MySQL extension

STATE State MySQL extension

INFO Info MySQL extension

For an extensive description of the table columns, see SHOW PROCESSLIST Syntax.

Notes:

• The PROCESSLIST table is a non-standard table. It was added in MySQL 5.1.7.

• Like the output from the corresponding SHOW statement, the PROCESSLIST table will only show information about your own
threads, unless you have the PROCESS privilege, in which case you will see information about other threads, too. As an an-
onymous user, you cannot see any rows at all.

• If an SQL statement refers to INFORMATION_SCHEMA.PROCESSLIST, then MySQL will populate the entire table once,
when statement execution begins, so there is read consistency during the statement. There is no read consistency for a multi-
statement transaction, though.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST
SHOW FULL PROCESSLIST

33

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/time.html
http://dev.mysql.com/doc/refman/5.1/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_process

Chapter 23. The INFORMATION_SCHEMA
REFERENTIAL_CONSTRAINTS Table

The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

UNIQUE_CONSTRAINT_CATALOG NULL

UNIQUE_CONSTRAINT_SCHEMA

UNIQUE_CONSTRAINT_NAME

MATCH_OPTION

UPDATE_RULE

DELETE_RULE

TABLE_NAME

REFERENCED_TABLE_NAME

Notes:

• The REFERENTIAL_CONSTRAINTS table was added in MySQL 5.1.10. The REFERENCED_TABLE_NAME column was ad-
ded in MySQL 5.1.16.

• TABLE_NAME has the same value as TABLE_NAME in INFORMATION_SCHEMA.TABLE_CONSTRAINTS.

• CONSTRAINT_SCHEMA and CONSTRAINT_NAME identify the foreign key.

• UNIQUE_CONSTRAINT_SCHEMA, UNIQUE_CONSTRAINT_NAME, and REFERENCED_TABLE_NAME identify the refer-
enced key. (Note: Before MySQL 5.1.16, UNIQUE_CONSTRAINT_NAME incorrectly named the referenced table, not the con-
straint.)

• The only valid value at this time for MATCH_OPTION is NONE.

• The possible values for UPDATE_RULE or DELETE_RULE are CASCADE, SET NULL, SET DEFAULT, RESTRICT, NO
ACTION.

34

http://dev.mysql.com/doc/refman/5.1/en/show.html

Chapter 24. The INFORMATION_SCHEMA GLOBAL_STATUS and
SESSION_STATUS Tables

The GLOBAL_STATUS and SESSION_STATUS tables provide information about server status variables. Their contents corres-
pond to the information produced by the SHOW GLOBAL STATUS and SHOW SESSION STATUS statements (see SHOW
STATUS Syntax).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name

VARIABLE_VALUE Value

Notes:

• The GLOBAL_STATUS and SESSION_STATUS tables were added in MySQL 5.1.12.

• Beginning with MySQL 5.1.19, the VARIABLE_VALUE column for each of these tables is defined as VARCHAR(20480).
Previously, this column had the data type DECIMAL(22,7), but was changed to avoid loss of data when working with status
variables whose values were strings (Bug#26994).

35

http://dev.mysql.com/doc/refman/5.1/en/show-status.html
http://dev.mysql.com/doc/refman/5.1/en/show-status.html
http://dev.mysql.com/doc/refman/5.1/en/show-status.html
http://dev.mysql.com/doc/refman/5.1/en/show-status.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://bugs.mysql.com/26994

Chapter 25. The INFORMATION_SCHEMA GLOBAL_VARIABLES
and SESSION_VARIABLES Tables

The GLOBAL_VARIABLES and SESSION_VARIABLES tables provide information about server status variables. Their contents
correspond to the information produced by the SHOW GLOBAL VARIABLES and SHOW SESSION VARIABLES statements
(see SHOW VARIABLES Syntax).

INFORMATION_SCHEMA Name SHOW Name Remarks

VARIABLE_NAME Variable_name

VARIABLE_VALUE Value

Notes:

• The GLOBAL_VARIABLES and SESSION_VARIABLES tables were added in MySQL 5.1.12.

• Beginning with MySQL 5.1.19, the VARIABLE_VALUE column for each of these tables is defined as VARCHAR(20480).
Previously, this column had the data type LONGTEXT; this was changed in order to make these tables consistent with the
GLOBAL_STATUS and SESSION_STATUS tables, whose definitions had been changed in that version (see Chapter 24, The
INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables).

36

http://dev.mysql.com/doc/refman/5.1/en/show-variables.html
http://dev.mysql.com/doc/refman/5.1/en/show-variables.html
http://dev.mysql.com/doc/refman/5.1/en/show-variables.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/blob.html

Chapter 26. Other INFORMATION_SCHEMA Tables
We intend to implement additional INFORMATION_SCHEMA tables. In particular, we acknowledge the need for the PARAMET-
ERS table. (PARAMETERS is implemented in MySQL 6.0.)

37

Chapter 27. Extensions to SHOW Statements
Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which rows to display.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW DATABASES. Similarly,
SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| GLOBAL_STATUS |
| GLOBAL_VARIABLES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| SESSION_STATUS |
| SESSION_VARIABLES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+
27 rows in set (0.00 sec)

SHOW COLUMNS and DESCRIBE can display information about the columns in individual INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also allow a WHERE clause that enables specification of
more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW statement. For example, the SHOW
CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As an example, the following

38

http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-databases.html
http://dev.mysql.com/doc/refman/5.1/en/show-tables.html
http://dev.mysql.com/doc/refman/5.1/en/show-columns.html
http://dev.mysql.com/doc/refman/5.1/en/describe.html
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.1/en/show.html
http://dev.mysql.com/doc/refman/5.1/en/show-character-set.html
http://dev.mysql.com/doc/refman/5.1/en/show-character-set.html
http://dev.mysql.com/doc/refman/5.1/en/show-character-set.html

statement displays information about character sets for which the default collation contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multi-byte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

Extensions to SHOW Statements

39

Chapter 28. MySQL 5.0 FAQ — INFORMATION_SCHEMA
Questions

• 28.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

• 28.2: Is there a discussion forum for INFORMATION_SCHEMA?

• 28.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

• 28.4: What is the difference between the Oracle Data Dictionary and MySQL's INFORMATION_SCHEMA?

• 28.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

Questions and Answers

28.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See INFORMATION_SCHEMA Tables

28.2: Is there a discussion forum for INFORMATION_SCHEMA?

See http://forums.mysql.com/list.php?101.

28.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available for purchase.) However, there are
books available — such as SQL-99 Complete, Really by Peter Gulutzan and Trudy Pelzer — which give a comprehensive overview
of the standard, including INFORMATION_SCHEMA.

28.4: What is the difference between the Oracle Data Dictionary and MySQL's INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different table names and column names.
MySQL's implementation is more similar to those found in DB2 and SQL Server, which also support INFORMATION_SCHEMA as
defined in the SQL standard.

28.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

No. Since applications may rely on a certain standard structure, this should not be modified. For this reason, we cannot support
bugs or other issues which result from modifying INFORMATION_SCHEMA tables or data.

40

http://forums.mysql.com/list.php?101

	MySQL Information Schema
	INFORMATION_SCHEMA Tables
	Chapter 1. The INFORMATION_SCHEMA SCHEMATA Table
	Chapter 2. The INFORMATION_SCHEMA TABLES Table
	Chapter 3. The INFORMATION_SCHEMA COLUMNS Table
	Chapter 4. The INFORMATION_SCHEMA STATISTICS Table
	Chapter 5. The INFORMATION_SCHEMA USER_PRIVILEGES Table
	Chapter 6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	Chapter 7. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	Chapter 8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	Chapter 9. The INFORMATION_SCHEMA CHARACTER_SETS Table
	Chapter 10. The INFORMATION_SCHEMA COLLATIONS Table
	Chapter 11. The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	Chapter 12. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	Chapter 13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	Chapter 14. The INFORMATION_SCHEMA ROUTINES Table
	Chapter 15. The INFORMATION_SCHEMA VIEWS Table
	Chapter 16. The INFORMATION_SCHEMA TRIGGERS Table
	Chapter 17. The INFORMATION_SCHEMA PLUGINS Table
	Chapter 18. The INFORMATION_SCHEMA ENGINES Table
	Chapter 19. The INFORMATION_SCHEMA PARTITIONS Table
	Chapter 20. The INFORMATION_SCHEMA EVENTS Table
	Chapter 21. The INFORMATION_SCHEMA FILES Table
	Chapter 22. The INFORMATION_SCHEMA PROCESSLIST Table
	Chapter 23. The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	Chapter 24. The INFORMATION_SCHEMA GLOBAL_STATUS and SESSION_STATUS Tables
	Chapter 25. The INFORMATION_SCHEMA GLOBAL_VARIABLES and SESSION_VARIABLES Tables
	Chapter 26. Other INFORMATION_SCHEMA Tables
	Chapter 27. Extensions to SHOW Statements
	Chapter 28. MySQL 5.0 FAQ — INFORMATION_SCHEMA

